• +1-703-684-6777
  • news@evtol.news

Skyworks Global eGyro

Skyworks Global, Inc.
Salt Lake City, Utah, USA

In 1986, Groen Brothers Aviation Inc. was founded and an acquisition of the company was started in December 2012 by Skyworks Global. On April 24, 2017, Groen Brothers was rebranded as Skyworks Global, Inc.

The eGyro is a concept all-electric autogyro aircraft that was first discussed by Peter Littlewood and Don Woodbury in early 2018, with the initial concept development beginning in May of 2018. No prototypes have been built but are in the planning process - expected in late 2020 or early 2021.

The eGyro pictured above is a concept drawing and the final design is not set. The aircraft has a cruise speed of 100-150 mph (161-241 km/h), a range of 100 miles (161 km), requires 1 pilot and carries 2-4 passengers and will have a modern composite fuselage. It will have large windows so passengers will have spectacular views and an enjoyable experience while flying.

For take-off, the eGyro uses an electric motor to rotate the main rotorblades so it can take off vertically without a runway. Then once in forward flight, the rotorblades will autorotate for sustained lift for the aircraft. The eGyro is an electric vertical take-off and landing (eVTOL) aircraft, using batteries for a power source and two (2) electric motors, one (1) to power the rotorblades and one (1) electric motor for the pusher propeller. The pusher-propeller is for forward flight. It's design uses adapted automotive batteries and electric motors.

What we’re going to solve is two-thirds of the world’s aviation requirements. No one has paid attention to the two-thirds of the world with no infrastructure, no educated workforce — gyrocraft are built for that. It’s extraordinarily broad what this aircraft can do. People need to stop comparing gyrocraft to the helicopter. The market is not to push helicopters out.

—Skyworks Global's Executive Committee Director, Retired US Air Force Brig. Gen. John Michel (paraphrased)

The autorotating rotor eliminates heavy, expensive, complicated helicopter parts such as the transmission and rotorblade linkages. This also reduces purchasing and maintenance costs.

“The rotor is only providing lift, not propulsion. With a helicopter you’re spinning the rotor with a transmission and anti-torque mechanisms which consume a lot of power. In a helicopter, you’re losing [as much as] 20 to 30% of your power to counter torque,” says Don Woodbury, Skyworks Global’s Chief Technology Adviser. Slow-turning gyrocopter rotors are more efficient than constantly powered helicopter rotorblades in cruising flight. According to Woodbury, drag rises proportional to the square of rotor speed and the rotor on the gyroplane typically turns only two-thirds as fast as that on a helicopter.

The booming sport gyroplane community in the 1980s nevertheless suffered a high accident rate, much of it attributed to poor design. According to Dave Groen, “There actually was very little true understanding of the science behind sustained autorotative flight.” Analyses showed the worst design errors in accident-prone gyrocraft of other manufacturers were in the misplacement of rotor and propeller thrust vectors as related to aircraft center of gravity. Groen designed the hands-off stable SparrowHawk to fix the safety issues of kit gyroplanes.

Emergency autorotation performance improved dramatically by being able to change collective pitch during descent. Collective pitch control could enhance gyroplane safety, especially in less than 1G maneuvers. Collective pitch also enables gyroplanes to spin-up on the ground at flat pitch, store energy in the rotor, and take off vertically with rapid collective input as the aircraft accelerates. In addition, it provides a means to optimize rotor speed for greater cruise efficiency.

Autogyro Benefits and Features:

  • A less complex aircraft which translates to lower purchasing cost, lower operating cost, lower maintenance cost, lower weight of aircraft, increases aircraft availability, increases efficiency, increases range and increases endurance (hours in the air)
  • No runway needed
  • Piloting is simplified
  • It is a highly stable aircraft
  • Inherent safety, it cannot stall and can land safely in the event of no power

The eGyro is scalable, depending upon the energy source. A larger version of the aircraft might need to use a hybrid-electric propulsion source. Skyworks also plans an unmanned version (the ScoutHawk) for border security, defense, pipeline inspection and other security-related applications.

The eGyro has a fundamental safety advantage over most eVTOL concepts in that the main rotor in forward flight is always in autorotation. The eGyro can land safely in any part of the flight envelope with or without power. No parachute required.

Because the eGyro has a number of safety, performance, and operating cost advantages as compared to other VTOL systems, the aircraft may offer a broader range of applications than other eVTOL aircraft. Currently, Skyworks sees intra-city (within one city) and inter-city (between two cities) mobility, tourism, and security as key applications for the aircraft.

While Skyworks has not set a business model for the eGryo at this time, they will most likely sell the eGryo to commercial and private consumers. Skyworks Global foresees the eGyro as a very safe and affordable solution for urban air mobility.


  • Type of aircraft: eVTOL autogryo
  • Pilot: 1
  • Capacity: 2-4 passengers
  • Speed: 100-150 mph (161-241 km/h)
  • Range: 100 miles (161 km)
  • Electric Motors: 2
  • Power source: Batteries
  • Fuselage: Composite
  • Tail: A tail with 2 booms
  • Landing gear: Retractable
  • Safety features: If a power failure occurs, can land safety to the ground. It's a less complex than a helicopter which reduces the likelihood of mechanical failures.

Autogyro Definitions:

  • Autogiro: The original term, trademarked and licensed by Juan de la Cierva (Spain), for an aircraft using an autorotating rotor for lift plus one or more propellers for thrust
  • Autogyro: The general term for a VTOL autorotating aircraft using an unpowered rotor for lift and one or more propellers for forward flight and one that was not a licensed Cierva Autogiro
  • Gyrocopter: This term is synonymous with the word autogyro and was trademarked by Igor Bensen and the Bensen Aircraft Corp
  • Gyroglider: A Bensen trademarked name for its towed autorotating gyroplanes
  • Gyrocraft: A general term for all gyro-type aircraft
  • Gyrodyne: An autogyro with wings
  • Gyronautics: A term coined by Skyworks Global for “the science of sustained autorotative flight”
  • Gyroplane: This term is synonymous with the word autogyro, gyrodyne and heliplane
  • Heliplane: A Defense Advanced Research Projects Agency (DARPA) program from 2005 to 2009 for a high -speed tip-jet rotor gyrodyne