• +1-703-684-6777
  • info@evtol.news

Packwing (Twin Rotor)

Packwing (Twin Rotor)
Packwing
Munich, Germany
www.packwing.com

Packwing is a hybrid-electric vertical takeoff and landing (VTOL) modular aircraft designed in 2011 by Klaus Deutschmann in Munich, Germany. The aircraft's airframe is a modular design allowing multiple components to be added together to make an aircraft larger or smaller, making the aircraft scalable, depending upon your passenger and cargo lifting needs.

Packwings are powered by fuel cells and supply the electricity for the electric motors used for vertical and forward flight. The fuel cells can be recharged with solar panels. Every major component of the single rotor Packwing aircraft is attachable and detachable from each other, depending upon how large you need to make the aircraft.

  • One of the key structural components is a module which houses the large vertical takeoff and landing propeller. This propeller housing has multiple attachment points which can accept other propeller housings, wings, forward ducted fans (which can tilt for greater control of the aircraft), passenger and cargo pods, and landing gear.
  • All these components can each be removed, added and repositioned allowing the aircraft to be scaled up or down depending upon the mission of the flight.
  • The landing gear is movable allowing the aircraft to land on uneven ground while the aircraft stays in a horizontal position. In addition, the landing gear can walk the aircraft while on the ground.

A twin rotor Packwing includes the following:

  • 2 vertical takeoff and landing propeller module (including 4 parachutes), forms the central wing-body.
  • 4 ducted fans for forward flight
  • 4 wings
  • 1 passenger or cargo pod
  • 1 set of landing gear

Some examples of twin rotor Packwing configurations:

  • Side-by-side configuration
  • A tandem configuration
  • 2 side-by-side modules and 1 modules in the front of the pair, making a triangle shape for the aircraft

While the type of piloting is unknown (either manual piloting, semi-autonomous or completely autonomous), the capacity of the aircraft ranges from one (1) or more passengers, traveling at a cruise speed of 150-250 km/h (93-155 mph) with a range of 500-1000 km (311-621 miles).

The vertical takeoff and landing propeller housing has shutters which open during takeoff and landing, and then close during forward flight to reduce drag. This module also houses the fuel cells, navigation software and hardware, emergency parachutes and anchor systems. When storing the aircraft, the wings can fold to allow the aircraft to be stored in a smaller space.

Multiple important goals have been set for the company's aircraft, including:

  • Safety
  • Sustainable
  • Usability for everyone
  • Modular
  • Low noise
  • Reliable
  • Versatile
  • Efficient
  • Fuel cells
  • Robust
  • Movable
  • Foldable wings for storage in small places

The safety features of the aircraft include all rotating parts are enclosed to avoid physical contact with passengers and crew and to reduce noise. Anti-drone and bird strike grids are assembled for the forward flight ducted fans. Four small emergency parachutes are attached to the airframe module which would work for high and low altitude deployment. The passenger cabins are also equipped with air bags in the unlikely event of a hard landing. The landing legs can also be extended, collapsed and destroyed to slow the aircraft down during a hard landing.

The company sees its aircraft as being useful for air taxi services, emergency and medical services, perishable food transportation, meal delivery, cargo delivery, disaster relief, police, military, construction.

The other advantage of this aircraft, says the company, is very little will need to be to added to the current aviation infrastructure because the aircraft can land in uneven terrain. In addition, once the aircraft has landed, it can move independently and can walk short distances using it's landing gear. The company sees their aircraft being made from materials which can be recycled or reused, after the aircraft has served it's useful life.A single rotor model is also in development.

Color coding for the graphics:

  • Red = Safety
  • Green = Passenger & cargo pods, landing gear, structural
  • Blue = Aerodynamics
  • Orange = Drive & power
  • Grey metallic = Main airframe module

Specifications:

  • Aircraft type: Hybrid electric VTOL modular aircraft
  • Piloting: Unknown
  • Capacity: It varies depending upon how many modules are added to the aircraft.
  • Cruise speed: 150 – 250 km/h (90 – 155 mph)
  • Range: 500 – 1000 km (310 – 620 mi)
  • Max. take-off weight (MTOW): 500 kg, scalable
  • Propulsion: Electric motors
  • Power source: Fuel cells (which can be charged using solar panels)
  • Fuselage aircraft design: This aircraft is of modular design, meaning the aircraft and all its major components (the main vertical takeoff and landing propeller/motor housing, wings, passenger/cargo pods, landing gear, forward electric ducted fans) can be taken apart and made into larger or smaller aircraft.
  • Landing gear: The landing gear can actually walk the aircraft for short distances allowing the aircraft to land on uneven surfaces and still be in a horizontal position.
  • Safety features: All rotating parts are enclosed to avoid physical contact with passengers and crew. Anti-drone and bird strike grids are attached to the forward flight ducted fans. Four small emergency parachutes are attached to the basic modules, so the high or low altitude deployment will land the aircraft successfully. The passenger cabins are also equipped with air bags in the unlikely event of a hard landing. During a hard landing, the landing legs can also be extended, collapsed and ultimately destroyed, to slow the aircraft down to reduce passenger injuries.

Resources:

Packwing website
Packwing LinkedIn