• +1-703-684-6777
  • news@evtol.news

Volocopter e-volo uVC200 cargo (defunct)


e-volo uVC200 cargo (defunct)
Volocopter GmbH
Bruschal, Germany

Volocopter GmbH was founded in 2011 in Karlsruhe, Germany, by Alexander Zosel and Stephen Wolf with the intent of making an electric vertical takeoff and landing (eVTOL) multicopter aircraft for fast and efficient advanced air mobility (AAM). Advanced air mobility has also been called urban air travel. On Oct. 21, 2011, the company made history by making the first crewed flight in the world of a multicopter, named the VC1. The multicopter was flown in southwest Germany by co-founder, primary designer, inventor and builder, Thomas Senkel. The Guinness Book of World Records has the historic flight listed on their website. The company was originally known as "e-volo GmbH" until being renamed to "Volocopter GmbH" in July 2017 and the company is now based in Bruchsal, Germany.

In 2015, Volocopter received the “Climate Champion COP21” award at the Paris Climate Conference (held 30 November - 11 December 2015) in Paris, France, for the Volocopter. In the same year, the company stated the Volocopter is being designed to be flown with the option of being piloted drone, remotely, or autonomously, for passenger aircraft. The company's cargo aircraft are designed to be flown remotely or autonomously. The Volocopter is simple, safe and green.

uVC200 hybrid-electric VTOL or eVTOL multicopter cargo drone (now defunct)
The uVC200 is a hybrid-electric or eVTOL multicopter cargo drone aircraft (now defunct) and was based on the VC200 eVTOL passenger multicopter model. The flight time of the multicopter has a predicted four hour flight time with a hybrid-electric power source and has a calculated 30 minute flight time with a battery-only power source. The maximum payload of the aircraft was expected to be 200 kg (441 lb).

The multicopter cargo drone has 18 propellers, 18 electric motors and was powered by batteries. The propeller frame assembly diameter is 5.4 meters (over 7-1/2 feet) in diameter. The landing gear is fixed skid landing gear that has high skids. This allows for a taller package to be picked-up and dropped-off allowing the drone to land even when carrying a larger package.

Some of the benefits of Volocopter's aircraft:

  • Autonomous flying (future)
  • Safe to fly. Distributed Electric Propulsion (DEP). DEP means having multiple propellers and motors on the aircraft so if one or more motors or propellers fail, the other working motors and propellers can safely land the aircraft.
  • Very efficient
  • Simple and reliable
  • Less failures than a petroleum powered aircraft
  • Less maintenance costs
  • Lower operational costs
  • Affordable and almost maintenance-free
  • Clean Aviation: No pollution, all electric
  • Much quieter than a helicopter

Almost all of the above benefits are due to using many less parts and many less moving parts, which increases reliability, reduces points of failure and increases the efficiency of the aircraft. The addition of batteries and electric motors allows the power to be drawn directly to the motor, thus increasing the efficiency of the craft. Electric motors are also very simple when compared to those that are non-electric: there is only one moving part in an electric motor. Small propellers and electric motors are also very light.

In contrast, a petroleum powered helicopter, you have a fuel tank, a line from the fuel tank with a fuel filter and fuel pump to the engine, many moving parts in a heavy engine, power is then sent to a heavy transmission which has many moving parts, then power is transferred to a heavy and complicated rotorhub which then transfers this power to the heavy rotorblades. Not to mention transferring power through a shaft to the rear of the helicopter through its tail to the tailrotor, all of these things components have more moving parts.

Volocopter's mission and future goals
The purpose of what was then known as e-volo was to respond to the growing urbanization of world cities and respond in kind with technological advances in connectivity, sensors, electronics/battery and drone development to help take pressure off the already crowded inner city roads by offering an alternative aerial option. And all of the early e-volo, now Volocopter, concepts and prototypes were to have the option to be either all electric or hybrid-electric VTOL aircraft (according to a Sept. 29, 2016 presentation by e-volo GmbH at a NASA ODM Workshop in Hartford, Connecticut, USA). Fast forward several years from 2016 to now and Volocopter is only making all-electric or eVTOL aircraft.

The company's early plans also included having six Volocopter models; three passenger models and three cargo-only models. The line-up for passenger aircraft includes the VC100 version for one person, the VC200 for two people and the VC400 as a four-seater. The uVC100 cargo drone was based on the VC100 airframe, the uVC200 cargo drone was based on the VC200 airframe and the heavy-load drone, the uVC400, was based on the VC400 airframe. As of 2020, Volocopter has one eVTOL cargo or uncrewed drone called the Volodrone.

All the Volocopter's designs were to have identical components with identical safety standards, each aircraft having 18 propellers and 18 electric motors. In 2020, Volocopter had estimated the purchase price for their passenger eVTOL aircraft to cost around €300,000.00 Euros. The company is in the business to provide emission-free, low-noise, inter-urban piloted or remote transportation and, later autonomous aerial mobility.


  • Aircraft type: eVTOL or hybrid-electric VTOL cargo design concept
  • Piloting: Remote or autonomous
  • Capacity: Cargo only, no passengers
  • Flight time: 30 minutes with a battery-only power source, 4 hours with a hybrid-electric power source
  • Maximum payload: 200 kg (441 lb)
  • Propellers: 18 propellers
  • Electric Motors: 18 electric motors
  • Propeller frame assembly diameter: 5.4 meters (over 17-1/2 feet)
  • Fuselage: Based on the e-volo VC200 single passenger eVTOL aircraft
  • Power source: Battery or hybrid-electric power source
  • Landing gear: Fixed skid landing gear
  • Safety Features: Distributed Electric Propulsion (DEP), provides safety through redundancy for its passengers and/or cargo. DEP means having multiple propellers and motors on the aircraft so if one or more motors or propellers fail, the other working motors and propellers can safely land the aircraft. There is also an aircraft parachute. Has automatic altitude control, automatic gentle landing, crosswinds and turbulence is automatically compensated for. Redundancy has been built into the aircraft so if one critical system breaks, there are other same exact systems so the aircraft can continue flying and safely land.

Related Aircraft:

Company Insights